Answer:
a) 35.75 ft/s
b) 45 ft
Explanation:
<u>Given </u>
Weight W = 100 lbf
mass(m) = 100*32.174/32.2=99.92 lb
decrease in kinetic energy ΔKE = -500 ft.lbf
increase in kinetic energy ΔPE= 1500 ft.lbf
initial velocity V_1 = 40 ft/s
initial height h_1 = 30 ft/s
The gravitational acceleration g = 32.2 ft/s2 Required
(a) Final velocity V_2 (a) Final elevation h_2
<u>Solution </u>
Change in kinetic energy is defined by
ΔKE = .5*m *( V_2 ^2-V_1^2)
Change in potential energy is defined by
ΔKE = W *( h_2 -h_1 )
Then,
-500=.5*99.92*1/32.174*(V_2 ^2-40^2)
V_2=35.75 ft/s
1500 = 100 x (h_2 — 30)
h_2= 45 ft
Answer:
Explanation:
1) TRUE; potential difference can be calculated using path integral. Since the electric field is a conservative, the potential difference can be calculated using any path.
2) TRUE; since potential due to a charge is inversely dependent on distance, at infinity the potential will be almost zero.
3) TRUE, W = q.VBA.
4) FALSE; eV is a unit for work (or) energy.
5) TRUE; since the electric force is conservative force. There will be no loss in energy, the decreased potential energy will be coverted to kinetic energy.
6) FALSE; in the direction of electric field the potential decreases.
7) FALSE; equipotential surface is perpendicular to the electric field lines.
8) FALSE; electrostatic potential is scalar quantity. It depends only on the charge and distance from it.
9) FALSE; Inside a conductor the electric field is zero but the electric potential is constant at the value that is at the surface of the conductor.
10) TRUE; as long as the field is being measured outiside the body the bodies act as point charges. So electric fields due to all types of bodies charged identically will be equal.
The odometer measures distance
the answer to the complicated question is a diploid