In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)
Answer:
N
Explanation:
Using the formula you gave:
G=?
m=7.35*10^22kg
r=1.74*10^6m
G=6.67*10^-11nm^2kg^-2
you can use the formula
g=Gm/r^2
Answer:
Technician b is correct.
Explanation:
Crimping cable allows a firm connection in mechanical terms and allows a low resistance path for the signal or the current flow, solder although it is better in terms of electrical conduction, can be impractical if the cable is subjected to excessive movement.
A crimped cable with excessive movement can also be easily broken at the ends, where it joins the part of the cable that is crimped, for this reason, a cable that is in excessive motion is recomended to be spliced by joining cable with cable
.
In order to decide which metod is better for splicing cables its necessary to evaluate each situation separatly.
Answer:
Compounds are two or more elements chemically combined in definite proportions by weight.
Mixtures are two or more substances not chemically combined.
Explanation:
Hope this helped Mark BRAINLIEST!!!