Answer:
Explanation:
Coordinate system is one that describe the location of an object in a given plane. It implies the use of axes (coordinates) and points.
Given that the man in the question walks 400 m due north of east. The cardinal points can be used in this case, with the north and east cardinals as the required axis.
scale = 
= 
= 
scale = 1:40
This is a reduced scale which implies that 1 cm on the drawing is equal to 40 m on the original length.
The man's direction is
north of east.
The graphical drawing of the vector is herewith attached to this answer.
Answer:
D
Explanation:
the formula is F=mgh
so now you can write it like
m= 4×50=200
200×1.5×10=30000
Answer:
(a) 1.054 m/s²
(b) 1.404 m/s²
Explanation:
0.5·m·g·cos(θ) - μs·m·g·(1 - sin(θ)) - μk·m·g·(1 - sin(θ)) = m·a
Which gives;
0.5·g·cos(θ) - μ·g·(1 - sin(θ) = a
Where:
m = Mass of the of the block
μ = Coefficient of friction
g = Acceleration due to gravity = 9.81 m/s²
a = Acceleration of the block
θ = Angle of elevation of the block = 20°
Therefore;
0.5×9.81·cos(20°) - μs×9.81×(1 - sin(20°) - μk×9.81×(1 - sin(20°) = a
(a) When the static friction μs = 0.610 and the dynamic friction μk = 0.500, we have;
0.5×9.81·cos(20°) - 0.610×9.81×(1 - sin(20°) - 0.500×9.81×(1 - sin(20°) = 1.054 m/s²
(b) When the static friction μs = 0.400 and the dynamic friction μk = 0.300, we have;
0.5×9.81·cos(20°) - 0.400×9.81×(1 - sin(20°) - 0.300×9.81×(1 - sin(20°) = 1.404 m/s².
I think wind is anther answer
Answer:
The answer is Muscular endurance
Explanation:
It is this because your seeing how long your muscles can with stand. I answered by guessing lol.