Answer:
<h3>F=4k.gm/s^2</h3>
Explanation:
<h3>F=m×a</h3><h3>f=2k.g×2m/s^2</h3><h3>f=4k.gm/s^2</h3>
Answer:
Explanation:
We're asked to calculate the number of atoms of
Ca
in
153
g Ca
.
What we must first do is convert the given mass of calcium to moles of calcium, using its molar mass (referring to a periodic table, this is
40.08
g
mol
):
153
g Ca
(
1
mol Ca
40.08
g Ca
)
=
3.82
mol Ca
Using Avogadro's number,
6.022
×
10
23
particles
mol
, we can calculate the number of atoms present:
3.82
mol Ca
(
6.022
×
10
23
atoms Ca
1
mol Ca
)
=
2.30
×
10
24
atoms Ca
For the first question, salt is soluble while sand is insoluble or not dissolvable in water. The salt should have vanished or melted, but the sand stayed noticeable or visible, making a dark brown solution probably with some sand particles caught on the walls of the container when the boiling water was put in to the mixture of salt and sand. The solubility of a chemical can be disturbed by temperature, and in the case of salt in water, the hot temperature of the boiling water enhanced the salt's capability to melt in it.
For the second question, the melted or dissolved salt should have easily made its way through the filter paper and into the second container, while the undissolved and muddy sand particles is caught on the filter paper. The size of the pores of the filter paper didn’t change. On the contrary, the size of the salt became smaller because it has been dissolved which is also the reason why it was able to go through the filter paper, while the size of the sand may have doubled or even tripled which made it harder to pass through.