<span>the balanced equation for the reaction is as follows
2C</span>₄H₁₀ + 13O₂ ---> 8 CO₂ + 10H₂<span>O
stoichiometry of C</span>₄H₁₀ to O₂ <span>is 2:13
stoichiometry applies to the molar ratio of reactants and products. Avagadros law states that volume of gas is directly proportional to number of moles of gas when pressure and temperature are constant.
Therefore volume ratio of reactants is equal to molar ratio, volume ratio of C</span>₄H₁₀ to O₂<span> is 2:13
2 L of </span>C₄H₁₀ reacts with 13 L of O₂<span>
then 100 L of </span>C₄H₁₀<span> reacts with 13/2 x 100 = 650 L
therefore 650 L of O</span>₂<span> are required </span>
animals, grass, and decomposers
Answer: maybe mixing with an acid? They are all very similar
Explanation:
Maybe because the different acids have different atoms and molecules
Taking into account the reaction stoichiometry, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CO₂ + 4 H₄ → CH₄ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CO₂: 1 mole
- H₄: 4 moles
- CH₄: 1 mole
- H₂O: 2 moles
<h3>Moles of CH₄ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 1 mole of CO₂ form 4 moles of CH₄, 85.1 moles of CO₂ form how many moles of CH₄?

<u><em>moles of CH₄= 340.4 moles</em></u>
Then, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
The idea behind a tree diagram is to start on the left with the whole thing, or one. Every time several possible outcomes exist the probability in that branch splits off into a smaller branch for each outcome.