The tangent line to <em>y</em> = <em>f(x)</em> at a point (<em>a</em>, <em>f(a)</em> ) has slope d<em>y</em>/d<em>x</em> at <em>x</em> = <em>a</em>. So first compute the derivative:
<em>y</em> = <em>x</em>² - 9<em>x</em> → d<em>y</em>/d<em>x</em> = 2<em>x</em> - 9
When <em>x</em> = 4, the function takes on a value of
<em>y</em> = 4² - 9•4 = -20
and the derivative is
d<em>y</em>/d<em>x</em> (4) = 2•4 - 9 = -1
Then use the point-slope formula to get the equation of the tangent line:
<em>y</em> - (-20) = -1 (<em>x</em> - 4)
<em>y</em> + 20 = -<em>x</em> + 4
<em>y</em> = -<em>x</em> - 24
The normal line is perpendicular to the tangent, so its slope is -1/(-1) = 1. It passes through the same point, so its equation is
<em>y</em> - (-20) = 1 (<em>x</em> - 4)
<em>y</em> + 20 = <em>x</em> - 4
<em>y</em> = <em>x</em> - 24
Both of these conditions must be true in order for the assumption that the binomial distribution is approximately normal. In other words, if
and
then we can use a normal distribution to get a good estimate of the binomial distribution. If either np or nq is smaller than 5, then a normal distribution wouldn't be a good model to use.
side note: q = 1-p is the complement of probability p
2x+y=5
To put this in slope intercept form, you simply have to get y by itself on the left side of the equation.
2x+y=5
2x+y-2x=5-2x
y=-2x+5
Now, I had to switch the right side around like that, because slope intercept form is y=mx+b
Because you're subtracting 2x from 5, it becomes 5 added to -2x when it's put in the correct form.
y=-2x+5
Answer:
3.45
Step-by-step explanation: