D. A constant pressure calorimeter would be used because an increase in heat causes an increase in pressure.
The answer is C. convection.
Answer:
a) Germanium = 5.76 x 〖10〗^11 〖cm〗^(-3) , Semiconductor is n-type.
b) Silicon = 2.25 x 〖10〗^5 〖cm〗^(-3) , Semiconductor is n-type.
For clear view of the answers: Please refer to calculation 5 in the attachments section.
Explanation:
So, in order to find out the concentration of holes and electrons in a sample of germanium and silicon which have the concentration of donor atoms equals to 〖10〗^15 〖cm〗^(-3). We first need to find out the intrinsic carrier concentration of silicon and germanium at room temperature (T= 300K).
Here is the formula to calculate intrinsic carrier concentration: For calculation please refer to calculation 1:
So, till now we have calculated the intrinsic carrier concentration for germanium and silicon. Now, in this question we have been given donor concentration (N_d) (N subscript d), but if donor concentration is much greater than the intrinsic concentration then we can write: Please refer to calculation 2.
So, now we have got the concentration of electrons in both germanium and silicon. Now, we have to find out the concentration of holes in germanium and silicon (p_o). (p subscript o)
Equation to find out hole concentration: Please refer to calculation 3. and Calculation 4. in the attachment section.
Good Luck Everyone! Hope you will understand.
Answer:
The answer to your question is 0.10 M
Explanation:
Data
Molarity = ?
mass of Sucrose = 125 g
volume = 3.5 l
Formula
Molarity = moles / volume
Process
1.- Calculate the molar mass of sucrose
C₁₂H₂₂O₁₁ = (12 x 12) + (1 x 22) + (16 x 11)
= 144 + 22 + 176
= 342 g
2.- Convert the mass of sucrose to moles
342 g of sucrose ------------------- 1 mol
125 g of sucrose -------------------- x
x = (125 x 1) / 342
x = 0.365 moles
3.- Calculate the molarity
Molarity = 0.365 / 3.5
4.- Result
Molarity = 0.10