Answer:
See explanation
Explanation:
A limiting reactant is the reactant in a reaction that is done reacting first, because there are less moles of it than are needed for a full reaction with the other compound or compounds.
Hope this helps!
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
Hepta is seven and tetra is four, so option c is your answer
<h2>
Answer:True</h2>
Explanation:
Heterogeneous mixture is a mixture with non-uniform composition.
The properties of the mixture like concentration may change for different parts of the mixture.
Colloids contain solute particles of size
.The presence of these particles makes the mixture heterogeneous.
Suspensions contain solute particles of size
.These particles settle to the bottom of the mixture which makes the composition of the bottom different from the top.
So,colloids and suspensions are two types of heterogeneous mixtures.
Answer:

Explanation:
Hello there!
In this case, when considering weak acids which have an associated percent dissociation, we first need to set up the ionization reaction and the equilibrium expression:
![HA\rightleftharpoons H^++A^-\\\\Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=HA%5Crightleftharpoons%20H%5E%2B%2BA%5E-%5C%5C%5C%5CKa%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Now, by introducing x as the reaction extent which also represents the concentration of both H+ and A-, we have:
![Ka=\frac{x^2}{[HA]_0-x} =10^{-4.74}=1.82x10^{-5}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7Bx%5E2%7D%7B%5BHA%5D_0-x%7D%20%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7D)
Thus, it is possible to find x given the pH as shown below:

So that we can calculate the initial concentration of the acid:
![\frac{(1.82x10^{-5})^2}{[HA]_0-1.82x10^{-5}} =1.82x10^{-5}\\\\\frac{1.82x10^{-5}}{[HA]_0-1.82x10^{-5}} =1\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%281.82x10%5E%7B-5%7D%29%5E2%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1.82x10%5E%7B-5%7D%5C%5C%5C%5C%5Cfrac%7B1.82x10%5E%7B-5%7D%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1%5C%5C%5C%5C)
![[HA]_0=3.64x10^{-5}M](https://tex.z-dn.net/?f=%5BHA%5D_0%3D3.64x10%5E%7B-5%7DM)
Therefore, the percent dissociation turns out to be:
![\% diss=\frac{x}{[HA]_0}*100\% \\\\\% diss=\frac{1.82x10^{-5}M}{3.64x10^{-5}M}*100\% \\\\\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%3D%5Cfrac%7Bx%7D%7B%5BHA%5D_0%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%3D%5Cfrac%7B1.82x10%5E%7B-5%7DM%7D%7B3.64x10%5E%7B-5%7DM%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%20%3D%2050%5C%25)
Best regards!