Answer:
Centre: (0,0); vertices: (-√6,0),(√6,0); foci: (-2,0), (2,0)
Step-by-step explanation:
2x² + 6y² = 12
We must convert this to the standard form of an ellipse
![\dfrac{ (x - h)^{2} }{a^{2}} + \dfrac{(y - k)^{2}}{b^{2}} = 1\\\\\begin{array}{lrcl}2x^{2} + 6y^{2} &= &12\\\mathbf{\dfrac{x^{2}}{6} +\dfrac{y^{2}}{2}} & = & \mathbf{1} & \text{Divided each side by 12}\\\\\end{array}](https://tex.z-dn.net/?f=%5Cdfrac%7B%20%28x%20-%20h%29%5E%7B2%7D%20%7D%7Ba%5E%7B2%7D%7D%20%2B%20%5Cdfrac%7B%28y%20-%20k%29%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%20%3D%201%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Blrcl%7D2x%5E%7B2%7D%20%2B%206y%5E%7B2%7D%20%26%3D%20%2612%5C%5C%5Cmathbf%7B%5Cdfrac%7Bx%5E%7B2%7D%7D%7B6%7D%20%2B%5Cdfrac%7By%5E%7B2%7D%7D%7B2%7D%7D%20%26%20%3D%20%26%20%5Cmathbf%7B1%7D%20%26%20%5Ctext%7BDivided%20each%20side%20by%2012%7D%5C%5C%5C%5C%5Cend%7Barray%7D)
h = 0; k = 0; a = √6; b = √2
The centre is at (h,k) = (0,0)
a > b, so the major axis along the x-axis
The vertices are at (±a,0), that is, they are at (-√6,0) and (√6,0).
c² = a² - b² = 6 - 2 = 4
c = 2
The foci are at (-2,0) and (2,0).
The graph of your ellipse shows the centre at (0,0), the vertices at (-√6,0) and (√6,0), and the foci at (-2,0) and (2,0).