Answer:
FV(p)= PV*(1 + g)^t
Step-by-step explanation:
Giving the following information:
Number of insects (PV)= 1,500
Increase rate= 3 weekly
<u>First, we need to calculate the daily growth rate:</u>
Daily rate (g)= [3^(1/7)] - 1
Daily rate (g)= 0.16993
<u>Now, by using the following formula, we can determine the population p in any given day t:</u>
FV(p)= PV*(1 + g)^t
<u>For, example after 7 days:</u>
FV(p)= 1,500*(1.16993^7)
FV(p)= 4,500
<u>For example, after 10 days:</u>
FV(p)= 1,500*(1.16993^10)
FV(p)= 7,206
Answer:
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
Step-by-step explanation:
In order to solve this problem we will attribute variables to the ages of Michael and his father. For his father age we will attribute a variable called "f" and for Michael's age we will attribute a variable called "x". The first information that the problem gives us is that Michael's dad is 30 years of age, so we have:
f = 30
Then the problem states that the age of the father is 2 years "more" than four "times" Michaels age. The "more" implies a sum and the "times" implies a product, so we have:
f = 2 + 4*x
We can now find Michael's age, for that we need to isolate the "x" variable. We have:
f - 2 = 4*x
4*x = f - 2
x = (f-2)/4
x = (30 - 2)/4 = 7 years
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
To solve the equation, you need to isolate/get the variable "P" by itself in the equation:
P - 3 = -4 Add 3 on both sides to get "P" by itself
P - 3 + 3 = -4 + 3
P = -1
PROOF
P - 3 = -4 Plug in -1 for P
-1 - 3 = -4
-4 = -4
Since there is no diagram this is how I did it. cross multiply and divide.