In order to solve this problem, we transform the statements into
algebraic expressions. First, we assign the variables.
Let:
x = Gina’s number
y = Sara’s number
For the first equation, we show that Gina’s number is greater
than Sara’s number by 2. For the second equation, we show that the sum of both
numbers is 68.
<span>(1)
</span>x – y = 2
<span>(2)
</span>x + y = 68
<span>We
add the two expressions, which result in the expression: 2x = 70. Then we
divide 70 by 2 to get the value of x. We then have x = 35. Using the second
equation, we solve for y = 68-35. This gives y = 33. To summarize, Gina’s
number is 35 while Sara’s number is 33.</span>
Answer:
3
Step-by-step explanation:
4362
3= hundreds place value
So that means there are 3 whole hundreds
Answer:
<h3>Y=-21/2x+5</h3>
Step-by-step explanation:
<u><em>SLOPE FORMULA:</em></u>
y₂-y₁/x₂-x₁=rise/run
<u><em>SLOPE-INTERCEPT FORM:</em></u>
y=mx+b
m represents the slope.
b represents the y-intercept.
y₂=(-16)
y₁=47
x₂=2
y₁=(-4)
Solve.

Furthermore, the y-intercept is 5.
y=-21/2x+5
The correct answer is y=-21/2x+5.
Answer:
D
Step-by-step explanation:
if indeed two functions are inverse of each other, then their composite will render a result of "x", namely, if g(x) is indeed an inverse of f(x), then
![\bf (g\circ f)(x)=x\implies g(~~f(x)~~)=x \\\\\\ \begin{cases} f(x) = 3x\\ g(x)=\cfrac{1}{3}x \end{cases}\qquad \qquad g(~~f(x)~~)=\cfrac{1}{3}[f(x)]\implies g(~~f(x)~~)=\cfrac{1}{3}(3x)](https://tex.z-dn.net/?f=%5Cbf%20%28g%5Ccirc%20f%29%28x%29%3Dx%5Cimplies%20g%28~~f%28x%29~~%29%3Dx%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20f%28x%29%20%3D%203x%5C%5C%20g%28x%29%3D%5Ccfrac%7B1%7D%7B3%7Dx%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%5Bf%28x%29%5D%5Cimplies%20g%28~~f%28x%29~~%29%3D%5Ccfrac%7B1%7D%7B3%7D%283x%29)