Answer:
Alecia lives farther from school
Step-by-step explanation:
<em>Georgia</em>
we know that
The distance from the school to her home is 67/100 of a mile

<em>Alecia</em>
we know that
The distance from the school to her home is
3/10 of a mile plus 4/10 of a mile
so

Compare the distances

therefore
Alecia lives farther from school
Answer:
33%
Step-by-step explanation:
Assuming the weight of the mixture to be 100g**, then the weight of ryegrass in the mixture would be 30g.
Also, assume the weight mixture X used in the mixture is Xg, then the weight of mixture Y used in the mixture would be (100-X)g.
So we can now equate the parts of the ryegrass in the mixture as:
0.4X + 0.25(100-X) = 30
<=> 0.4X + 25 - 0.25X = 30
<=> 0.15X = 5
<=> X = 5/0.15 = 500/15 = 100/3
So the weight of mixture X as a percentage of the weight of the mixture
= (weight of X/weight of mixture) * 100%
= (100/3)/100 * 100%
= 33%
Using derivatives, it is found that regarding the tangent line to the function, we have that:
- The equation of the line is y = 962x - 5119.
<h3>What is a linear function?</h3>
A linear function is modeled by:
y = mx + b
In which:
- m is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.
- b is the y-intercept, which is the value of y when x = 0, and can also be interpreted as the initial value of the function.
The slope of the line tangent to a function f(x) at x = x' is given by f'(x'). In this problem, the function is given by:
f(x) = 5x³ + 2x + 1.
The derivative is given by:
f'(x) = 15x² + 2.
Hence the slope at x = 8 is:
m = f'(8) = 15(8)² + 2 = 962.
The line goes through the point (8,f(8)), hence:
f(8) = 5(8)³ + 2(8) + 1 = 2577.
Hence:
y = 962x + b
2577 = 962(8) + b
b = -5119.
Hence the equation is:
y = 962x - 5119.
More can be learned about tangent lines at brainly.com/question/8174665
#SPJ1
Answer:
The ordinate of B exceeds the ordinate of A by 7
Step-by-step explanation:
Let
A(x1,y1),B(x2,y2)
where
x1 is the abscissa of A
x2 is the abscissa of B
y1 is the ordinate of A
y2 is the ordinate of B
we know that


so
-----> equation A
----> equation B
substitute equation B in equation A
therefore
The ordinate of B exceeds the ordinate of A by 7