Answer:
24
Step-by-step explanation:
4(x+y)
4(1+5)
4*6
24
There are 16 3/8 in 6 inches
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>
Answer:
The answer to your question is Long = 10.39
Step-by-step explanation:
Data
hypotenuse = 12
long = ?
Process
1.- To find Long, we must use the trigonometric functions sine or cosine.
If we use sine, we use the 60° angle
If we use cosine, we use the 30° angle
a) sin 60 = long / hypotenuse
Long = hypotenuse x sin 60
Long = 12 x sin 60
Long = 10.39
b) cos 30 = Long / hypotenuse
Long = hypotenuse x cos 30
Long = 12 x cos 30
Long = 10.39
3x*5x-2=4-2x*1
15x-2=4-2x
13x=2
x=6.5