1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denpristay [2]
3 years ago
10

This is a graph of the function g(x) =-3x+2. Determine the domain value when th

Mathematics
1 answer:
lord [1]3 years ago
4 0

Range = -4= g(x)

Therefore, g(x) = -3x+2

or, -4=3x +2

or, 3x= -4-2

or, 3x= -6

or, x= -6/3 = -2

OPTION A is the correct answer.

You might be interested in
Write the number in two other forms. 40,023,032
grin007 [14]

40,000,000 + 20,000 + 3,000 + 30 + 2

and

forty million twenty-three thousand thirty-two

3 0
3 years ago
Ashley found 2 boxes of sugar in the kitchen. The green box is 1.26 kg and the red box is 1.026 kg. Which box contains more suga
Anni [7]

Answer:

Answer:

Green box contains more sugar.

Step-by-step explanation:

Consider the provided information.

Ashley found 2 boxes of sugar in the kitchen.

The green box says 1.26 kg and the red box says 1.026 kg.

we need to find which box contains more sugar.

To find this we will first check the digit at ones place.

Both the digit has 1 at the ones place. So now check the digit at tenths place.

1.26 has 2 at tenths place while 1.026 has 0 at tenths place.

As we know 2 is greater than 0, thus the number 1.26 is greater than 1.026.

Hence, green box contains more sugar.

4 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Read 2 more answers
Ashlyn needs to bring a dessert to her dinner party. If the bakery has eight pies to choose from, how many ways can Ashlyn choos
Snowcat [4.5K]

<u>Ashely have </u><u>56 ways</u><u> to choose from</u>

This question can be solved using a system in mathematics called Permutation and it's in a topic of mathematics called combinatorics.

<h3 /><h3>Permutation</h3>

This is the process of arranging a particular set of data in different ways.

Since Ashely is choosing 3 desserts out of 8 in no specific ways

P=\frac{n!}{(n-r)!}

Where n = total number of ways available

r = total numbers that would be selected.

Data given

  • n = 8
  • r = 3

Let's substitute these values into the equation.

P=\frac{8!}{(8-3)!3!} \\P=\frac{8*7*6*5*4*3*2*1}{5*4*3*2*1*3*2*1}\\P=56

From the calculation above, Ashley have 56 ways in which can choose 3 dessert from an 8 choice.

Learn more about permutation here;

brainly.com/question/11871015

8 0
2 years ago
Solve for X (round to the nearest hundred)
LekaFEV [45]

Step-by-step explanation:

We use tangent because it uses opposite over adjacent.

So,

tan 33 = x/46

or

46 * tan 33 = x

Type this into the calculator and you get around 29.87

4 0
3 years ago
Other questions:
  • Use the original price and the markup to find the retail price.
    7·1 answer
  • Defined by two lines or rays diverging from a common point.
    12·2 answers
  • Bearings are tricky and I though I had this
    7·1 answer
  • What is the volume of the cone to the nearest cubic meter? (Use ​π = 3.14) A) 21 m3 B) 84 m3 C) 168 m3 D) 335 m3
    5·2 answers
  • Help needed math 3 - 10 points read closely
    12·1 answer
  • Jen recently rode her bicycle to visit her friend who lives 6 miles away. On her way there, her average speed was 8 miles per ho
    13·1 answer
  • True or false , help please lol
    13·1 answer
  • Which is a composite number<br> 81<br> 61<br> 71<br> 41
    9·1 answer
  • Akshay purchased goods costing ₹5,00,000 and sold at 20% profit on cost. Calculate the selling price of goods.​
    5·1 answer
  • What is 4,928 will rounded to the nearest hundred​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!