Answer:
R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Step-by-step explanation:
Squaring both sides of equation:
I^2 = (ER)^2/(R^2 + (WL)^2)
<=>(ER)^2 = (I^2)*(R^2 + (WL)^2)
<=>(ER)^2 - (IR)^2 = (IWL)^2
<=> R^2(E^2 - I^2) = (IWL)^2
<=> R^2 = (IWL)^2/(E^2 - I^2)
<=> R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Hope this helps!
Answer:
a(4) = 15/4
Step-by-step explanation:
Here we're told that the first term is a(1) = 30 and that the common factor r = 1/2.
Thus, the geometric sequence formula specific to this case is
a(n) = 30(1/:2)^(n-1).
What is the fourth term? Let n = 4,
a(4) = 30(1/2)^(4-1), or a(4) = 30(1/2)^(3), or a(4) = 30(1/8) = 30/8, or, in reduced form,
a(4) = 15/4.
Area of a trapezoid is found with the formula, A=(a+b)/2 x h.
(-5, 2 ) means x = -5 and y = 2
so answer is <span>point D</span>