Answer:
The interdependence of agriculture and industry helps the development of both the sectors. The most important aspect of this inter dependence is that the products of one serve as important inputs for the other. Growth of one sector, thus means ample supply of inputs for the other.
Explanation:
Answer:
0
Explanation:
Given parameters:
Half-life = 8.08days
Unknown:
What fraction is left unchanged after 16.16days = ?
Solution:
The half - life of a substance is the time taken for the half of a radioactive material to decay to half.
Day 0 Day 8.08 Day 16.16
100% 50% 0% Parent
0% 50% 100% Daughter
After 16.16 days, non of the original sample will remain unchanged.
Discuss the different observations that you would record during an investigation into the energy transformations of a lamp that uses electrical energy.
The enthalpy change of the reaction is <u>-1347.8 kJ.</u>
<h3>What is the enthalpy change, ΔH, of the reaction?</h3>
The enthalpy change, ΔH, of the reaction is calculated from Hess's law of constant heat summation as follows:
Hess's law states that the enthalpy change of a reaction is the sum of the enthalpies of the intermediate reaction.
Given the reactions below and their enthalpy values;
1. X (s) + 12 O₂ (g)⟶ XO (s) ΔH₁ = −850.5 kJ
2. XCO₃ (s) ⟶ XO (s) + CO₂ (g) ΔH₂ = +497.3 kJ
The enthalpy change, ΔH, of the reaction whose equation is given below, will be:
X (s) + 12 O₂ (g) + CO₂ (g) ⟶ XCO₃ (s)
ΔH = ΔH₁ - ΔH₂
ΔH = − 850.5 kJ - (+497.3 kJ)
ΔH = -1347.8 kJ
Learn more about enthalpy change at: brainly.com/question/14047927
#SPJ1
Answer:
1.48 moles of SeCl6 are needed
Explanation:
Based on the reaction:
SeCl6 + O2 → SeO2 + 3Cl2
<em>1 mole of SeCl6 reacts producing 3 moles of Cl2.</em>
To solve this question we need to use the conversion factor:
1mol SeCl6 = 3mol Cl2
As we want to produce 4.45 moles of Cl2, we need:
4.45 mol Cl2 * (1mol SeCl6 / 3mol Cl2) =
<h3>1.48 moles of SeCl6 are needed</h3>