Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Answer:
Molecular mass of Ba3(PO4)2 = 3 × 137.5 + 2 [31 + 4 × 16] = 602.5
Explanation:
hope this helps
plz mark brainliest
Answer:
4 1/2
Explanation:
Use a ratio to find your answer
4 6
----- = -------
3 x
Cross multiply to solve for x.
4x = 18
x = 18/4
x = 4 2/4 which is the same as 4 1/2