The answer to the problem is A
Answer:
Option C is correct.
Step-by-step explanation:
A direct variation function is
y/x = k
i.e. we can say that the ratio of y and x is equal to a constant value k.
We will check for each Option given.
Option A
7/2 = 7/2
8/3 = 8/3
9/4 = 9/4
10/5 = 2
11/6 = 11/6
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option B
-3/2 = -3/2
-5/4 = -5/4
-6/6 = -1
-7/8 = -7/8
-8/10 = -4/5
Option B is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option C
10/-5 = -2
8/-4 = -2
6/-3 = -2
4/-2 = -2
2/-1 = -2
Option C is correct as y/x = k as ratio of y/x for each value in table c is equal to constant value -2
Option D
-3/-2 = 3/2
-3/1 = -3
-3/0 = 0
-3/1 = -3
-3/2 = -3/2
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant .
SO, Option C is correct.
Answer:
105 km
Step-by-step explanation:
Written as a proportion, the ratio of km to cm will be the same for both distances:
(x km)/(17.5 cm) = (15 km)/(2.5 cm)
x km = (15 km)(17.5/2.5) = 105 km
105 actual kilometers are represented by 17.5 cm on the map.
Answer:
Dotted linear inequality shaded above passes through (0, 4) and (4, 0). Solid exponential inequality shaded below passes through (negative 2,2) & (0,5)
Step-by-step explanation:
we have
----> inequality A
The solution of the inequality A is the shaded area above the dotted line 
The dotted line passes through the points (0,4) and (4,0) (y and x-intercepts)
and
-----> inequality B
The solution of the inequality B is the shaded area above the solid line 
The solid line passes through the points (0,5) and (-2,2)
therefore
The solution of the system of inequalities is the shaded area between the dotted line and the solid line
see the attached figure
Dotted linear inequality shaded above passes through (0, 4) and (4, 0). Solid exponential inequality shaded below passes through (negative 2,2) & (0,5)
Answer:

Step-by-step explanation:
Total Surface Area of cylinder = Lateral Surface Area + Area of both circle bases.
Lateral Surface Area = Circumference of Circle
Height
Lateral Surface Area = 
Area of one circle base: 
Area of both circle bases: 
Total Surface Area = 