Answer:
3000
Step-by-step explanation:
![\dfrac{\partial\left(2xy^4+\frac1{x+y^2}\right)}{\partial y}=8xy^3-\dfrac{2y}{(x+y^2)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cleft%282xy%5E4%2B%5Cfrac1%7Bx%2By%5E2%7D%5Cright%29%7D%7B%5Cpartial%20y%7D%3D8xy%5E3-%5Cdfrac%7B2y%7D%7B%28x%2By%5E2%29%5E2%7D)
![\dfrac{\partial\left(4x^2y^3+\frac{2y}{x+y^2}\right)}{\partial x}=8xy^3-\dfrac{2y}{(x+y^2)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cleft%284x%5E2y%5E3%2B%5Cfrac%7B2y%7D%7Bx%2By%5E2%7D%5Cright%29%7D%7B%5Cpartial%20x%7D%3D8xy%5E3-%5Cdfrac%7B2y%7D%7B%28x%2By%5E2%29%5E2%7D)
so the ODE is indeed exact and there is a solution of the form
. We have
![\dfrac{\partial F}{\partial x}=2xy^4+\dfrac1{x+y^2}\implies F(x,y)=x^2y^4+\ln(x+y^2)+f(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20F%7D%7B%5Cpartial%20x%7D%3D2xy%5E4%2B%5Cdfrac1%7Bx%2By%5E2%7D%5Cimplies%20F%28x%2Cy%29%3Dx%5E2y%5E4%2B%5Cln%28x%2By%5E2%29%2Bf%28y%29)
![\dfrac{\partial F}{\partial y}=4x^2y^3+\dfrac{2y}{x+y^2}=4x^2y^3+\dfrac{2y}{x+y^2}+f'(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20F%7D%7B%5Cpartial%20y%7D%3D4x%5E2y%5E3%2B%5Cdfrac%7B2y%7D%7Bx%2By%5E2%7D%3D4x%5E2y%5E3%2B%5Cdfrac%7B2y%7D%7Bx%2By%5E2%7D%2Bf%27%28y%29)
![f'(y)=0\implies f(y)=C](https://tex.z-dn.net/?f=f%27%28y%29%3D0%5Cimplies%20f%28y%29%3DC)
![\implies F(x,y)=x^2y^3+\ln(x+y^2)=C](https://tex.z-dn.net/?f=%5Cimplies%20F%28x%2Cy%29%3Dx%5E2y%5E3%2B%5Cln%28x%2By%5E2%29%3DC)
With
, we have
![8+\ln9=C](https://tex.z-dn.net/?f=8%2B%5Cln9%3DC)
so
![\boxed{x^2y^3+\ln(x+y^2)=8+\ln9}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%5E2y%5E3%2B%5Cln%28x%2By%5E2%29%3D8%2B%5Cln9%7D)
Answer:
The domain of the function f(x) is:
![\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:](https://tex.z-dn.net/?f=%5Cmathrm%7BDomain%5C%3Aof%5C%3A%7D%5C%3A5%5Cleft%7Cx%5Cright%7C%5C%3A%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3A-%5Cinfty%20%5C%3A%3Cx%3C%5Cinfty%20%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%28-%5Cinfty%20%5C%3A%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)
The range of the function f(x) is:
![\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D5%5Cleft%7Cx%5Cright%7C%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cge%20%5C%3A0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5B0%2C%5C%3A%5Cinfty%20%5C%3A%29%5Cend%7Bbmatrix%7D)
Step-by-step explanation:
Given the function
![f\left(x\right)=5\left|x\right|](https://tex.z-dn.net/?f=f%5Cleft%28x%5Cright%29%3D5%5Cleft%7Cx%5Cright%7C)
Determining the domain:
We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
- Domain refers to all the possible sets of input values on the x-axis.
It is clear that the function has undefined points nor domain constraints.
Thus, the domain of the function f(x) is:
![\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:](https://tex.z-dn.net/?f=%5Cmathrm%7BDomain%5C%3Aof%5C%3A%7D%5C%3A5%5Cleft%7Cx%5Cright%7C%5C%3A%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3A-%5Cinfty%20%5C%3A%3Cx%3C%5Cinfty%20%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%28-%5Cinfty%20%5C%3A%2C%5C%3A%5Cinfty%20%5C%3A%5Cright%29%5Cend%7Bbmatrix%7D)
Determining the range:
We also know that range is the set of values of the dependent variable for which a function is defined.
In other words,
- Range refers to all the possible sets of output values on the y-axis.
We know that the range of an Absolute function is of the form
![c|ax+b|+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k](https://tex.z-dn.net/?f=c%7Cax%2Bb%7C%2Bk%5C%3A%5Cmathrm%7Bis%7D%5C%3A%5C%3Af%5Cleft%28x%5Cright%29%5Cge%20%5C%3Ak)
![k=0](https://tex.z-dn.net/?f=k%3D0)
so
Thus, the range of the function f(x) is:
![\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}](https://tex.z-dn.net/?f=%5Cmathrm%7BRange%5C%3Aof%5C%3A%7D5%5Cleft%7Cx%5Cright%7C%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3Af%5Cleft%28x%5Cright%29%5Cge%20%5C%3A0%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5B0%2C%5C%3A%5Cinfty%20%5C%3A%29%5Cend%7Bbmatrix%7D)
Answer:
C
Step-by-step explanation:
When reflecting across the origin, negetives become positives and positives become negetives.
Hope that helps!