If xy=0 we assume x and y equal 0
so
the zeros are wehre f(x)=0
0=5(2x-5)(5x+4)
set each to zero
5 is not equal 0 so we don't do that
0=2x-5
5=2x
5/2=x
0=5x+4
-4=5x
-4/5=x
zeroes at x=5/2 and -4/5
        
                    
             
        
        
        
Answer:
Part A: 1 
Explain: The solution for a pair of lines is where they intersect.
Part B: (3,4)
Explain: (3,4) is the place where the lines intersect.
 
        
             
        
        
        
Answer:
Step-by-step explanation:
its false
 
        
                    
             
        
        
        
Answer:
A. {x: x ≥ -4}
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- {Builder Set Notation}
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
3(2x - 1) - 11x ≤ -3x + 5
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Distributive Property Distribute 3:                                                                  6x - 3 - 11x ≤ -3x + 5
- [Subtraction] Combine like terms:                                                                   -5x - 3 ≤ -3x + 5
- [Addition Property of Equality] Add 5x on both sides:                                   -3 ≤ 2x + 5
- [Subtraction Property of Equality] Subtract 5 on both sides:                        -8 ≤ 2x
- [Division Property of Equality] Divide 2 on both sides:                                  -4 ≤ x
- Rewrite:                                                                                                             x ≥ -4