Explanation:
We know that,

Where,

h = Height at which pressure is to be calculated

Answer:
a) P' = P_original, b) P ’= P_original + ρ g Δh
Explanation:
The expression for nanometric pressure is
P = ρ g h
where ρ is the density of the liquid and h is the height
a) we change the radius of the barrel, but keeping the same height
as the pressure does not depend on the radius it remains the same
P' = P_original
b) We change the barrel height
h ’≠ h
we substitute in the equation
P ’= ρ g h’
h ’= h + Δh
P ’= ρ g (h + Δh)
P ’= (ρ g h) + ρ g Δh
P ’= P_original + ΔP
In this case, the pressure changes due to the new height,
*if it is higher than the initial one, the pressure increases
*if the height is less than the initial one, the pressure is less
Oxygen, hydrogen, sodium, chlorine, lead, iron. Hope this helps!!!
Answer:
|F| = 393750 N
Explanation:
Given that,
Total mass of the train, m = 750000 kg
Initial speed, u = 84 m/s
Final speed, v = 42 m/s
Time, t = 80 s
We need to find the net force acting on the train. The formula for force is given by :
F = ma

So, the magnitude of net force is 393750 N.