It MUST be either glue or gravity.
Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.
The answer is slightly left and slightly right of the curved end of the horseshoe.
Answer:
T1 = 131.4 [N]
T2 = 261 [N]
Explanation:
To solve this problem we must make a sketch of how will be the semicircle, for this reason we conducted an internet search, to find the scheme of the problem. This scheme is attached in the first image.
Then we make a free body diagram, with this free body diagram, we raise the forces that act on the body. Since it is a problem involving static equilibrium, the sum of forces in any direction and moments must be equal to zero.
By performing a sum of forces on the Y axis equal to zero we can find an equation that relates the forces of tension T1 & T2.
The second equation can be determined by summing moments equal to zero, around the point of application of the T1 force. In this way we find the T2 force.
The value of T2, is replaced in the first equation and we can find the value for T1.
Therefore
T1 = 131.4 [N]
T2 = 261 [N]
The free body diagram and the developed equations can be seen in the second attached image.
Answer:
46.4 s
Explanation:
5 minutes = 60 * 5 = 300 seconds
Let g = 9.8 m/s2. And
be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim . Both of their motions are subjected to parallel component of the gravitational acceleration
Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]
Jim equation of motion is
As both of them cover the same distance
So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time