1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
3 years ago
5

Find the value of x.A.5B. 40C. 45 D. 20​

Mathematics
2 answers:
Alinara [238K]3 years ago
3 0

(B) x = 40

Step-by-step explanation:

4x + 20 = 180

4x = 160

x = 40

slega [8]3 years ago
3 0

Answer:

B. 40

Step-by-step explanation:

This is a straight angle; this means that 20 and 4x are supplementary angles.

<u>SUPPLEMENTARY ANGLES:</u> TWO ANGLES WITH A SUM OF 180°.

20 + 4x = 180.

First, subtract 20 from 180 and from 20.

20 - 20 = 0 (cancels itself out).

180 - 20 = 60.

Now we are left with 4x = 160.

Lastly, divide 160 from 4.

160/4 = 40.

Therefore, the value of x is 40.

Here's an attachment to make this process easier to understand.

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
The average of 1/2006 and 1/2007 is equal to half of their?
erma4kov [3.2K]
Add it. average= sum of 2 counts/2
5 0
3 years ago
What is a simple definition for a function in math?
klemol [59]

Answer:

Related order pairs that have one value from the second components of the order pain.

Hoped this worked :3

8 0
3 years ago
Read 2 more answers
Please help asap What is the sum of the following two polynomials?<br> (3x2 – 5x + 3) and (-x2 – 3x)
Anton [14]
(3x^2 - 5x +3) + (-2x -3x)
=3x^2-5x+3 + (6x^2)
=9x^2-5x+3
4 0
2 years ago
Read 2 more answers
What times what equals -18
photoshop1234 [79]

-1 x 18 = 18

-2 x 9 = 18

-3 x 6 = 18

-6 x 3 = 18

-9 x 2 = 18

-18 x 1 = 18

Hope this helped!

Nate

7 0
3 years ago
Other questions:
  • HELP ASAP WORTH 68 points<br> The product of which expression contains four decimal places?
    6·2 answers
  • Please give me an answer for that equations​
    10·1 answer
  • What does Mutually exclusive mean
    15·2 answers
  • DIRECTIONS: Use this information to answer Parts A and B. Scientists measure temperature in degrees Celcius and in kelvin. A tem
    9·1 answer
  • Subtract 2 16/21 - (-8 5/21). reduce if possible​
    10·1 answer
  • CORRECT ANSWER ILL CASHAPP 5$
    15·1 answer
  • How do i know if a system of equation has infinite number of solutions
    12·1 answer
  • What would be the range of possible measures of 5 and 6
    13·2 answers
  • What fractions are equivalent to terminating decimals?
    5·1 answer
  • During a recent year, charitable contributions in the United States totaled $371 billion. The graph below shows to whom this mon
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!