29440 divided by 2 equals 14,720
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5
Answer:
-15X^3y^2Z^2 is the answer
Answer:
Hours Worked
Step-by-step explanation:
Length of segment of the hypotenuse adjacent to the shorter leg is 5 inches and the length of the altitude is 3 inches.
Step-by-step explanation:
Step 1: Let the triangle be ΔABC with right angle at B. The altitude drawn from B intersects the hypotenuse AC at D. So 2 new right angled triangles are formed, ΔADB and ΔCDB.
Step 2: According to a theorem in similarity of triangles, when an altitude is drawn from any angle to the hypotenuse of a right triangle, the 2 newly formed triangles are similar to each other as well as to the bigger right triangle. So ΔABC ~ ΔADB ~ ΔCDB.
Step 3: Identify the corresponding sides and form an equation based on proportion. Let the length of the altitude be x. Considering ΔABC and ΔADB, AB/DB = AC/AB
⇒ 6/x = 12/6
⇒ 6/x = 2
⇒ x = 3 inches
Step 4: To find length of the hypotenuse adjacent to the shorter leg (side AB of 6 inches), consider ΔADB.
⇒ 
⇒
⇒
⇒
⇒
⇒AD = 5 inches