Using the binomial distribution, it is found that the probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
For each person, there are only two possible outcomes, either they need correction for their eyesight, or they do not. The probability of a person needing correction is independent of any other person, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- A survey showed that 77% of us need correction, hence p = 0.77.
- 13 adults are randomly selected, hence n = 13.
The probability that at least 12 of them need correction for their eyesight is given by:

In which:



Then:

The probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
More can be learned about the binomial distribution at brainly.com/question/24863377
I got 784 inches cubed, I cut the figure into two, the first one was 8×4×14=448, the second was 8×3×14=336,
therefore 448+336=784
Answer:
9,000
Step-by-step explanation:
Answer:
8.06
Step-by-step explanation:
I used my brain and paper. I don't want to have to explain it anymore sorry but yes I think that is the right answer.
647? Not completely sure if that’s the answer you’re looking for.