The numbers are "x" and "y",
we suggest this system of equations.
x+y=24
x-y=15
solve by reduction method.
x+y=24
x-y=15
-----------------
2x=39 ⇒x=39/2=19.5
x+y=24
-(x-y=15)
-------------------
2y=9 ⇒y=9/2=4.5
The numbers are 19.5 and 4.5
To check
19.5+4.5=24
19.5-4.5=15
Step-by-step explanation:
If you want to make the improper fraction into a mixed fraction/decimal;
35/4 = 32/4 + 3/4 = 8 3/4 = 8.75.
Hello there.
<span>Which numbers are necessary to solve this problem?
Brian goes to the gym 3 times a week. He exercises for 45 minutes each visit. Fifteen of those minutes are spent on weights and the rest are spent on the treadmill.
How much time does Brian spend on the treadmill in 4 weeks?
Answer: </span><span>3 times a week, 45 minutes, 15 minutes, 4 weeks
</span>
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
-65 i suppose
Step-by-step explanation: