This is a linear function.
A linear function is a straight line that has a slope, and follows the formula: <em>
y = mx + b</em>
In which:
y = y
m = slope
x = x
b = y -intercept
hope this helps<em />
Linear functions can be written in the form y=mx+b, where:
y is a y coordinate on the line
m is the slope of the line
x is the x coordinate on the line that corresponds with the y coordinate in the equation
b is the y-intercept of the line
So for the equation y=-10x+1:
m=-10 and b=1 so the slope of the line is -10, and the y-intercept is 1. Your answer is B.
You can add 8 to both sides so you get
x>5
Answer:
The speeds of the cars is: 0.625 miles/minute
Step-by-step explanation:
We use systems of equations in two variables to solve this problem.
Recall that the definition of speed (v) is the quotient of the distance traveled divided the time it took :
. Notice as well that the speed of both cars is the same, but their times are different because they covered different distances. So if we find the distances they covered, we can easily find what their speed was.
Writing the velocity equation for car A (which reached its destination in 24 minutes) is:

Now we write a similar equation for car B which travels 5 miles further than car A and does it in 32 minutes:

Now we solve for
in this last equation and make the substitution in the equation for car A:

So this is the speed of both cars: 0.625 miles/minute
Answer:
Explanation:
Number the sides of the decagon: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, from top (currently red) clockwise.
- The side number one can be colored of five different colors (red, orange, blue, green, or yellow): 5
- The side number two can be colored with four different colors: 4
- The side number three can be colored with three different colors: 3
- The side number four can be colored with two different colors: 2
- The side number five can be colored with the only color left: 1
- Each of the sides six through ten can be colored with one color, the same as its opposite side: 1
Thus, by the multiplication or fundamental principle of counting, the number of different ways to color the decagon will be:
- 5 × 4 × 3 × 2 ×1 × 1 × 1 × 1 × 1 × 1 = 120.
Notice that numbering the sides starting from other than the top side is a rotation of the decagon, which would lead to identical coloring decagons, not adding a new way to the number of ways to color the sides of the figure.