Radiography techs are trained to operate medical equipment that uses X-rays and other types of radiation. Ultrasound techs, referred to professionally as diagnostic medical sonographers, operate equipment that uses high-frequency sound waves to create images.
(Credits to google)
Answer:
8 moles of CO
Explanation:
To produce carbon monoxide we begin from C and O₂ as this reaction shows:
2C + O₂ → 2CO
Therefore, 2 moles of C can produce 2 moles of CO
If I have 8 moles of C, I must produce 8 moles of CO
Ratio is 1:1
As you move around there is a change in: electronegativies, ionisation energies, atomic radius etc. different amounts of these properties are going to effect how the element acts
Answer:
monochlorinated products: 4
dichlorinated products: 12
Explanation:
Chlorination of alkanes is a reaction that takes place when the chlorine is in presence of light. This actually decomposes the chlorine, and one atom of Chlorine substracts an hydrogen from the alkane. Now, this hydrogen substracted comes usually from the most substitued carbon, because it's more stable (A tertiary carbon is more stable than a secondary carbon, and this more stable than primary).
When this happens, the other chlorine atom, goes as electrophyle in that carbon and formed the chlorinated product. Now, although a tertiary carbon is more stable, we can still have (in minor quantities) chlorinated products that comes from a secondary and primary carbon. The first picture shows the general mechanism of the chlorination, and the possible products for a monochlorinated.
The second picture shows the possible dichlorinated products, which are in higher quantities than the monochlorinated basicallu because of the variety of positions the chlorine can be. So, second picture shows all the products.
Answer:
8
Explanation:
To solve this question, we just need to put the new number into the equation. If [A] remain constant then that mean [A2]= [A1]. If B doubled, then that mean [B2]= 2[B2]. To find what factor does the rate of reaction increases, we need to divide the first reaction rate with the second. The calculation will be:
rate2/rate1= k[A2][B2]³ / k[A1][B1]³
rate2/rate1= [A1][2B1]³ / [A1][B1]³
rate2/rate1= A1*8B1³ / A1*B1³
rate2/rate1= 8/1= 8
The rate of reaction will be 8 times faster.