The answer to your question will be 114.25
Answer:
B. 91 degrees
Step-by-step explanation:
supplementary angles = 180 degrees, so 180-89 = 91
Answer:
D. x=(1/6)y^2
Step-by-step explanation:
D. x=(1/6)y^2
One of the same-side exterior angles formed by two lines and a transversal is equal to 1/6 of the right angle and is 11 times smaller than the other angle. Then the lines are parallel
<h3><u>Solution:</u></h3>
Given that, One of the same-side exterior angles formed by two lines and a transversal is equal to 1/6 of the right angle and is 11 times smaller than the other angle.
We have to prove that the lines are parallel.
If they are parallel, sum of the described angles should be equal to 180 as they are same side exterior angles.
Now, the 1st angle will be 1/6 of right angle is given as:

And now, 15 degrees is 11 times smaller than the other
Then other angle = 11 times of 15 degrees

Now, sum of angles = 15 + 165 = 180 degrees.
As we expected their sum is 180 degrees. So the lines are parallel.
Hence, the given lines are parallel
Answer:
(x + 1)² = 7
Step-by-step explanation:
Given:
-2x = x² - 6
We'll start by rearranging it to solve for zero:
x² + 2x - 6 = 0
The first term is already a perfect square so that's fine. Normally, if that term had a non-square coefficient, you would need to multiply all terms a value that would change that constant to a perfect square.
Because it's already square (1), we can simply move to the next step, separating the -6 into a value that can be doubled to give us the 2, the coefficient of the second term. That value will of course be 1, giving us:
x² + 2x + 1 - 1 - 6 = 0
Now can group our perfect square on the left and our constants on the right:
x² + 2x + 1 - 7= 0
x² + 2x + 1 = 7
(x + 1)² = 7
To check our answer, we can solve for x:
x + 1 = ± √7
x = -1 ± √7
x ≈ 1.65, -3.65
Let's try one of those in the original equation:
-2x = x² - 6
-2(1.65) = 1.65² - 6
- 3.3 = 2.72 - 6
-3.3 = -3.28
Good. Given our rounding that difference of 2/100 is acceptable, so the answer is correct.