1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
3 years ago
15

Which figure does not show symmetry? A. B. C. D E.

Mathematics
2 answers:
Inessa05 [86]3 years ago
3 0
It is C. It is not possible to fold the shape about a line so that the two halves fit exactly on to of one another.
Mice21 [21]3 years ago
3 0
C is not symmetry
B is
D is
E is
And a
You might be interested in
Write an algebraic expression for each verbal expression. Then simplify, indicating the properties used. 4 times the difference
MissTica
4(f ^2-g)+f^2+2g is your answer
6 0
3 years ago
Help me plz I don't get it !!!!!!!!
Alona [7]
Answer: B.

It grows 3 inches per week
3 0
2 years ago
Read 2 more answers
Find the volume of the shaded figure by subtracting the smaller volume from the larger
alekssr [168]

Answer:

a. 9a^3 - 9ab^2

b. 9a(a^2 - b^2)

Step-by-step explanation:

a.

Volume = l*w*h

Volume_{smaller} = l*w*h

Where, l = 9a, w = b, h = b

Volume_{smaller} = 9a*b*b = 9ab^2

Volume_{larger} = l*w*h

Where, l = 9a, w = a, h = a

Volume_{smaller} = 9a*a*a = 9a^3

Volume of the shaded figure = 9a^3 - 9ab^2

b. 9a^3 - 9ab^2 expressed in factored form:

Look for the term that is common to 9a³ and 9ab², then take outside the parenthesis.

9a^3 - 9ab^2 = 9a(a^2 - b^2)

6 0
3 years ago
Set 2 Maths has 30 pupils in it.
Ierofanga [76]
80/100 x 30 = 24 because you just multiply percents
4 0
2 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • An internet start-up predicts its revenue by a straight-line method with a slope of $7000 per month. In its 6 th month it had re
    14·1 answer
  • Sqrt(3x)-1=-4<br><br> 1.)x=3<br><br> 2.)x=-3<br><br> 3.) no solution<br><br> 4.)x= 25/3
    7·1 answer
  • A cookie factory uses 1/2 of a barrel of oatmeal in each batch of cookies. The factory used 3 1/2 barrels of oatmeal yesterday.
    5·1 answer
  • ​40/​79−162.5%= whats the answer.
    14·1 answer
  • Tyler and Han is trying to solve this system by substitution:
    12·1 answer
  • Please help please ASAP please please help ASAP
    9·1 answer
  • Write the recurring decimal 0.473737373... as a fraction.​
    15·1 answer
  • Write the standard equation for the circle center (-6,8) that passes through (0,0)
    5·1 answer
  • Kevin wants to earn more than $58 trimming trees. He charges S6 per hour and pays $8 in equipment fees. What are the possible nu
    12·1 answer
  • Are the fractions equivalent?<br> 63/72. 7/9
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!