If the point U is between points T and V, then the numerical length of TV is 29 units
<h3>How to determine the numerical length of segment TV?</h3>
From the question, we have the following lengths that can be used in our computation:
- Length TU = 18 units
- Length UV = 11 units
The above parameters and representations implies that the point U is between endpoints T and V
This also means that the length TV is longer than the other lengths TU and TV
So, we have the following length equation
TV = TU + UV
Substitute the known values in the above equation
So, we have the following equation
TV = 18 + 11
Evaluate the sum of the like terms in the above equation
So, we have the following equation
TV = 29
Hence, the numerical length of segment TV is 29 units
Read more about lengths at
brainly.com/question/19131183
#SPJ1
<u>Possible question</u>
If tu = 18 and uv = 11 what is tv, if point u is between points t and v
Answer: 35 inches.
Step-by-step explanation:
We know that:
hypotenuse = 5*y in
cathetus 1 = (x + 8) in
cathetus 2 = (x + 3) in
The perimeter of the triangle is 76 inches, then:
5*y + (x + 8) + (x + 3) = 76
5*y + 2*x + 13 = 76
We also know that the length of the hypotenuse minus the length of the shorter leg is 17 in.
The shorter leg is x + 3, then:
5*y - (x + 3) = 17
Then we have the equations:
5*y + 2*x + 11 = 76
5*y - (x + 3) = 17
With only these two we can solve the system, first we need to isolate one of the variables in one of the equations, i will isolate x in the second equation.
x = 5*y - 3 - 17 = 5*y - 20
x = 5*y - 20
Now we can replace this in the other equation, we get:
5*y + 2*x + 11 = 76
5*y + 2*(5*y - 20) + 11 = 76
15*y - 40 + 13 = 76
15*y - 29 = 76
15*y = 76 + 29 = 105
and remember that the hypotenuse is equal to 5*y, then we want to get:
3*(5*y) = 105
5*y = 105/3 = 35
5*y = 35
Then te length of the hypotenuse is 35 inches.
Answer:
-3=(1/2)(2)+3
Step-by-step explanation: