Answer:
45.88297 m
Violet
Explanation:
x = Gap between holes = 5.9 mm
= Wavelength = 527 nm
D = Diameter of eye = 5 mm
L= Distance of observer from holes
From Rayleigh criteria we have the relation

A person could be 45.88297 m from the tile and still resolve the holes
Resolving them better means increasing the distance between the observer and the holes. It can be seen here that the distance is inversely proportional to the wavelength. Violet has a lower wavelength than red so, violet light would resolve the holes better.
Silicon is used in the manufacturing of microchips and is also used in motherboards. We use it in our daily lives. It is a high tech element.
It can hurt and harm the body on many different and levels
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>