Answer:
0.13 m/s
Explanation:
= Mass of first car = 140000 kg
= Mass of second car = 95000 kg
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
= Velocity of combined mass
For elastic collision

Their final velocity is 0.13 m/s
Answer:
ENQUIRE is the answer
Explanation: google....internet browser-.. .-.
Answer:
Part a)

Part b)

Part c)

Part d)
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
Explanation:
Part a)
When elevator is ascending with constant speed then we will have



So it will read same as that of the mass

Part b)
When elevator is decending with constant speed then we will have



So it will read same as that of the mass

Part c)
When elevator is ascending with constant speed 39 m/s and acceleration 10 m/s/s then we will have



Reading is given as



Part d)
Here the speed of the elevator is constant initially
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
Answer:
Explanation:
given ;
- coefficient of kinetic friction = 0.80
- considering the force acting in horizontal direction and from newton's 2nd law of motion;
- for vertical motion = Fn - mg = 0
- for horizontal motion = F = ma + miu mg = m( a + miu.g)
- therefore, F = miu mg where g = 9.81m/s^2
- plugging the values into the equation;
Horizontal force = 204.05N
Answer:
is b and d hope id helpful
Explanation:
idk how to explain