1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
2 years ago
6

Jamie painted a small rectangular drawing at

Mathematics
2 answers:
Zolol [24]2 years ago
8 0

Answer:

this is the answer you post at the bottom

Very sorry for taking up a question

Step-by-step explanation:

tatuchka [14]2 years ago
6 0

Answer:

im so sorry i dont know what this is about i suck at math but best of luck to you

Step-by-step explanation:

You might be interested in
A cylinder has a base diameter of 20 meters and a height of 10 meters. What is it’s volume in cubic meters, to the nearest tenth
Korvikt [17]

3141.6 cubic meters

Step-by-step explanation:

The volume of a cylinder is given by;

πr²h

π * (²⁰/₂)² * 10

π * 100 * 10

= 3141.6

4 0
3 years ago
If AC=5cm, BC=12cm, and m AC= 40 degrees what is the radius of the circumscribed circle
melamori03 [73]
Let's assume they meant C=40 degrees.  With an angle like that they're asking for approximation; we'll oblige.

The circumradius is the product of the triangle sides divided by four times the area.

Here we have remaining side given by the Law of Cosines.

AB^2 = AC^2 + BC^2 - 2\ AC \ BC \cos C

AB^2 = AC^2 + BC^2  - 2 AC \ AB \cos C = 5^2 + 12^2 - 2(5)(12) \cos 40^\circ

AB = \sqrt{  169 - 120 \cos 40 ^\circ}  \approx 8.77921789

The area is \frac 1 2\ AC \ BC \sin C = \frac 1 2 (5)(12) \sin 40^\circ \approx 19.283628



The circumradius is  r \approx \dfrac{(5)(12)(8.77921789 )}{ 4 (19.283628) }  = 6.829019329




5 0
3 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
HElp ill give 10 points!!!!!!!!!!!!!
Evgesh-ka [11]

PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZAnswer:

Step-by-step explanation:

4 0
3 years ago
Find the average rate of change in the price of gasoline from 2006 to 2008
labwork [276]

Answer:

A

Step-by-step explanation:

4 0
2 years ago
Other questions:
  • Zoe's bank offers 2% simple interest on Simple Savings accounts. If she deposits her $500 of graduation money into a Simple Savi
    9·1 answer
  • (8/9)^-2 without an exponent
    6·1 answer
  • Which of the following demonstrates the commutative property across multiplication for 2×10×7
    6·1 answer
  • Level 5a: The marching band is selling hats for $7 and t-shirts for $15. The band’s fundraising goal is $600. The equation to re
    10·1 answer
  • You have constructed wooden forms for pilings. The pilings are in the shape of rectangular solids, each measuring 10 ft. high an
    13·2 answers
  • How many terms are in the expression 1 over 6x - 18y + 9z - 2 =
    5·1 answer
  • When dividing polynomials using factorization, canceling identical factors in the denominator and the numerator will give the __
    7·1 answer
  • Please help me ASAP! Worth 11 points
    6·2 answers
  • Julia decides to make 5 batches of salad dressing. How much sugar should she use?
    11·1 answer
  • 3
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!