298 g of calcium carbonate CaCO₃
Explanation:
We have the following chemical reaction:
CaCN₂ (s) + 3 H₂O (l) → CaCO₃ (s)+ 2 NH₃ (g)
number of moles = mass / molar weight
number of moles of H₂O = 161 / 18 = 8.94 moles
Knowing the chemical reaction we devise the following reasoning:
if 3 moles of H₂O produces 1 mole of CaCO₃
then 8.94 moles of H₂O produces X moles of CaCO₃
X = (8.94 × 1) / 3 = 2.98 moles of CaCO₃
mass = number of moles × molar weight
mass of CaCO₃ = 2.98 × 100 = 298 g
Learn more about:
number of moles
brainly.com/question/1445383
brainly.com/question/516702
#learnwithBrainly
The right subject for this question is physics.
To calculate the work you use the formula:
Work = force * displacement
Work = 2500 pounds * 30 feet = 75,000 pounds - feet
To calculate the power you use the formula:
power = work / time
Power = 75,000 pound - feet / 30 seconds = 2300 pound-feet / second.
The question is incomplete, the complete question is:
The element tin has the following number of electrons per shell: 2.8. 18, 18, 4. Notice that the number of electrons in the outer shell of a tin atom is the same as that for a carbon atom. Therefore, what must be true of tin? Tin is a polar atom and can bind to other polar atoms. Tin has a high molecular weight to give tin-containing molecules greater stabilty. All of the above Tin conform single covalent bonds with other elements, but not double or triple covalent bonds Tincan bind to up to four elements at a time
Answer:
Tin can bind to up to four elements at a time
Explanation:
Certain important points were made in the question about tin and one of them is that tin is an element in the same group as carbon hence it has the same number of valence electrons as carbon.
Carbon is always tetra valent. The tetra valency of carbon is the idea that carbon forms four bonds.
If tin has the same number of valence electrons as carbon, then, tin can bind to up to four elements at a time
Answer is: because they were using simple chemical reactions to transform elements, but that is possible only with nuclear reactions, which in that time were not possible to conduct.
Nuclear reactions can produce new elements, because number of protons and neutrons is changed, lead and gold have different atomic and mass numbers.
The electrons of an atom participates in a chemical reaction, chemical reactions involve the rearrangement of electrons, because there is transfer, loss, gain and sharing of electrons in chemical reactions, new elements are not formed.