The remaining moles of C is 5.01 moles while the remaining moles of F₂ is 0.
<h3>
Reaction between Carbon and Fluorine </h3>
The reaction between carbon and Fluorine is given as;
C + 2F₂ -------> CF₄
1 : 2 1
from the reaction above,
2 moles of F₂ requires 1 mole of C
7.88 mole of F₂ will require: 7.88/2 = 3.94 moles of C and 3.94 moles of CF₄.
The remaining moles of C = 8.95 - 3.94 = 5.01 moles while the remaining moles of F₂ is 0.
Learn more about moles here: brainly.com/question/15356425
#SPJ1
Answer:
options?
Explanation:
i mean scientists fits so if any of the options have a scientist thats it
The particles in a solid are tightly packed and locked in place. Although we cannot see it or feel it, the particles are vibrating in place.
As these molecules heat up, they will vibrate more vigorously, and will eventually turn to water, then gas.
0.447 is the mole fraction of Nitrogen in this mixture.
mole fraction of nitrogen= moles of nitrogen/total moles
mole fraction of nitrogen=0.85/1.90
mole fraction of nitrogen=0.447
The product of the moles of a component and the total moles of the solution yields a mole fraction, which is a unit of concentration measurement. Because it is a ratio, mole fraction is a unitless statement. The sum of the components of the mole fraction of a solution is one. In a mixture of 1 mol benzene, 2 mol carbon tetrachloride, and 7 mol acetone, the mole fraction of the acetone is 0.7. This is computed by dividing the sum of the moles of acetone in the solution by the total number of moles of the solution's constituents:
To know more about mole fraction visit : brainly.com/question/8076655
#SPJ4
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m