Answer:
93.5 kPa
Explanation:
Step 1: Given data
- Initial pressure (P₁): 81.0 kPa
- Initial temperature (T₁): 50 °C
- Final volume (T₂): 100 °C
Step 2: Convert the temperatures to the Kelvin scale
When working with gases, we need to consider the absolute temperature. We will convert from Celsius to Kelvin using the following expression.
K = °C + 273.15
T₁: K = 50°C + 273.15 = 323 K
T₂: K = 100°C + 275.15 = 373 K
Step 3: Calculate the final pressure of the gas
At a constant volume, we can calculate the final pressure of the gas using Gay-Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = 81.0 kPa × 373 K/323 K
P₂ = 93.5 kPa
0.00702906176 moles
hope this helps :)
The answer is hydroxides.
The elements of the group IA are termed as alkali metals, because their hydroxides are alkaline.
Answer:
<em>The correct option is B) a bridge to connect two landmasses over a stretch of water.</em>
Explanation:
A civil engineer is a person who deals with the designing and construction of infrastructure projects like the construction of roads, buildings, bridges, airports, tunnels etc. Civil engineering is one of the most oldest disciplines in engineering and it is broken into many sub-disciplines. A civil engineer might work for a private or a government-based organization. Hence, among the options mentioned in the question, the construction of a bridge is the most likely function of a civil engineer.
Answer:
The pressure increases to 3.5 atm.
Solution:
According to Gay-Lussac's Law, " At constant volume and mass the pressure of gas is directly proportional to the applied temperature".
For initial and final states of a gas the equation is,
P₁ / T₁ = P₂ / T₂
Solving for P₂,
P₂ = P₁ T₂ / T₁ ----- (1)
Data Given;
P₁ = 3 atm
T₁ = 27 °C + 273 = 300 K
T₂ = 77 °C + 273 = 350 K
Putting values in eq. 1,
P₂ = (3 atm × 350 K) ÷ 300 K
P₂ = 3.5 atm