Answer:

Explanation:
= Initial volume = 100 mL
= Final volume = 1000 mL
= Initial concentration = 0.5 M
= Final concentration
We have the relation

The new concentration is
.
<span>a narrow, variable band of very strong, predominantly westerly air currents encircling the globe several miles above the earth. There are typically two or three jet streams in each of the northern and southern hemispheres.</span>
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation. (Option C)
<h3>How do systems at equilibrium respond to perturbation?</h3>
When a system at equilibrium suffers a perturbation, it shifts its equilibrium position to counteract such perturbation.
Let's consider a solution of acetic acid at equilibrium.
CH₃CO₂H(aq) = CH₃CO₂⁻(aq) + H⁺(aq)
If more acetic acid were added to the solution, the system will shift toward the products to counteract such an increase.
How would the system change if more acetic acid were added to the solution?
A. [H⁺] would decrease and [CH₃CO₂⁻] would increase. NO.
B. [H⁺] and [CH₃CO₂⁻] would decrease. NO.
C. [H⁺] and [CH₃CO₂⁻] would increase. YES. Both products would increase.
D. [H⁺] would increase and [CH₃CO₂⁻] would decrease. NO.
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation.
Learn more about equilibrium here: brainly.com/question/2943338
#SPJ1
Hey there!:
mass = 41.2 g
Volume = 8.2 cm³
Therefore:
D = m / V
D = 41.2 / 8.2
D = 5.02 g/cm³