Answer:
1.1 Inflow (Coupon payment ) = $1000 * 7.5% = $75
   Year     Inflows    Pvf at 5%     Present value
       1            75        0.952381     71.43
       2            75       0.907029    68.03
       3            75       0.863838     64.79
       4            75       0.822702     61.70
       4           1000    0.822702     822.70
    Total                                       1,088.65
Price of Bond, when yield to maturity is 5% = $1088.65
1.2    Year     Inflows    Pvf at 5.2%     Present value
            1            75          0.95057           71.29
           2            75          0.9035839        67.77
           3            75          0.85892             64.42
           4            75          0.816464            61.23  
           4          1000        0.816464            816.46
Total                                                           1,081.18
Price of Bond, when yield to maturity is 5.2% =$1081.18
1.3  Change in price of Bond = (Decrease in price of bond / price of bond ) * 100
= $7.47 / 1088.65 *100 
= 0.69%
Change in price of Bond when yield increases by 0.2%( i.e Decrease in price of bond) 
= $1088.65 - $ 1081.18 
= $7.47
1.4   Year    Inflows    Pvf at 5%       P. value    Year*P. value
         1          75          0.9523809    71.43            71.43
         2         75          0.907029       68.03           136.05
         3         75          0.863838        64.79           194.36
         4         75          0.822702        61.70            246.81
         4        1000       0.822702       822.70         3,290.81
      Total                                           1,088.65        3,939.47
Modified duration = Bond duration / ( 1+YTM) 
= 3.6187 / ( 1+0.05) 
= 3.446
Bond Duration = Sum of (PV of inflows) / Sum of (Year*PV of inflows)
= $3,939.47 / $1088.65
= $3.6187
1.5 % Change in price of bond = (-1 * Modified duration * % change in YTM in term of basis point) 
= ( -1 * 3.446 * 0.2) 
= -0.69 %