Answer:
A sample size of 657 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
In the past, 19% of all homes with a stay-at-home parent had the father as the stay-at-home parent.
This means that 
(a) What sample size is needed if the research firm's goal is to estimate the current proportion of homes with a stay-at-home parent in which the father is the stay-at-home parent with a margin of error of 0.03?
A sample size of n is needed.
n is found when 
Then






Rounding up to the nearest whole number.
A sample size of 657 is needed.
Y=mx+b
m= slope
so -5 is the slope of the given line
Answer: approximately 24
Step-by-step explanation:
We need to plot a regression line.
So we fit a model using the regression of Y on X, that an equation that predict Y for a given X using:
(Y -mean(Y ))= a(X-meanX)...........1
Where the formular of a is given the attachment.
N= the of individuals = 5
Y = amount of fat
X = time of exercise
mean(X )= sum of all X /N
= 131/5 = 26.2
mean(Y) = sum of all Y/N
= 104/5 = 20.8
a = N(SXY) - (SX)(SY)/ NS(X²) -(SX)²......2
SXY = Sum of Product X and Y
SX= sum of all X
SY = Sum of all Y
S(X²)= sum of all X²
(SX) = square of sum of X
a = -0.478
Hence we substitute into 1
Y-20.8 = -0.478 (X-26.2)
Y -20.8 = -0.478X - 12.524
Y = -0.478X + 33.324 or
Y = 33.324 - 0.478X (model)
When X = 20
Y = 33.324 - 0.478 × 20
Y = 33.324 - 9.56
Y = 23. 764
Y =24(approximately)
Carefully meaning of formula used in attachment to the solution they are the same.
By normal curve symmetry
<span>from normal table </span>
<span>we have z = 1.15 , z = -1.15 </span>
<span>z = (x - mean) / sigma </span>
<span>1.15 = (x - 150) / 25 </span>
<span>x = 178.75 </span>
<span>z = (x - mean) / sigma </span>
<span>-1.15 = (x - 150) / 25 </span>
<span>x = 121.25 </span>
<span>interval is (121.25 , 178.75) </span>
<span>Pr((121.25-150)/25 < x < (178.75-150)/25) </span>
<span>is about 75%</span>
2.47+7.1=9.57
7.1+2.47=9.57
9.57-2.47=7.1
9.57-7.1=2.47