Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg
Answer:
if electrons are shared unequally between bonded atoms
Explanation:
A polar covalent bond is a bond that is formed due to the unequal distribution of electrons between two partially charged atoms. This is observed when the difference in electronegativity between the bond atoms is between 0.5 and 1.7.
A polar bond is a covalent bond between two atoms where the electrons that form the bond are unevenly distributed. This causes the molecule to have a slight electric dipole moment where one end is slightly positive and the other is slightly negative.
The charge of the electric dipoles is less than a full unit charge, so they are considered partial charges and are called delta plus (δ +) and delta minus (δ-).
Because positive and negative charges are separated at the bond, molecules with polar covalent bonds interact with the dipoles of other molecules. This produces intermolecular dipole-dipole forces between the molecules.
I think it’s 7.41 because you count up all the atoms and find out how many are x (the large grey ones) and you do 2/27 x 100 which gives you 7.41 :) (sorry if i counted wrong it’s kinda hard)
Answer:
B.
the passage of genetic instructions from one generation to the next generation.
These are called genes. One mate reporduces with another made and the genetic buildup merges 50 % and 50% with genetics(if it's meiosis), or DNA codes from the parents to the offspring that then possess some of the genes. That shows heridity.
<span>The Kelvin scale is an absolute temperature scale, while the Celsius scale is not. When you convert a temperature from Celsius to Kelvin, you add 273 degrees to the temperature. However, when you calculate a temperature change, you get the same number, whether you use the Celsius or the Kelvin scale.</span>