Answer:
283.725 kJ ⋅ mol − 1
Explanation:
C(s) + 2Br2(g) ⇒ CBr4(g) , Δ H ∘ = 29.4 kJ ⋅ mol − 1
Br2(g) ⇒ Br(g) , Δ H ∘ = 111.9 kJ ⋅ mol − 1
C(s) ⇒ C(g) , Δ H ∘ = 716.7 kJ ⋅ mol − 1
4*eqn(2) + eqn(3) ⇒ 2Br2(g) + C(s) ⇒ 4 Br(g) + C(g) , Δ H ∘ = 1164.3 kJ ⋅ mol − 1
eqn(1) - eqn(4) ⇒ 4 Br(g) + C(g) ⇒ CBr4(g) , Δ H ∘ = -1134.9 kJ ⋅ mol − 1
so,
average bond enthalpy is
= 283.725 kJ ⋅ mol − 1
Answer:
7.35 - 7.45
Explanation:
The pH scale ranges from 0 (strongly acidic) to 14 (strongly basic or alkaline). A pH of 7.0, in the middle of this scale, is neutral. Blood is normally slightly basic, with a normal pH range of about 7.35 to 7.45. Usually, the body maintains the pH of blood close to 7.40.
Hope this helps
Answer:
3189.07Pa
Explanation:
The conversion of 23.92mmH to Pa can be achieved in the following way:
760mmHg = 101325Pa
23.92mmHg = (23.92x101325)/760 = 3189.07Pa
The correct answer is option B, that is, the pitch changes from low to high.
The Doppler shift or the Doppler Effect refers to the variation in the wavelength or frequency of a wave in association with an observer who is traveling comparative to the source of the wave. A prime illustration of Doppler shift is the modification of the pitch heard when a vehicle sounding a horn comes towards and move away from an observer.
In comparison to the frequency emitted, the obtained frequency is greater at the time of approach, similar at the instant of passing by, and lower at the time of recession.
c. table salt is a metalloid with properties of both reactants