Answer:
1. The image is real
2. 5.85
3. h' = 3.05 mm
4. The image is upright
Explanation:
1. Start with the first lens and apply 1/f = 1/p + 1/q
1/5.01 = 1/13.7 + 1/q
q = 7.90 cm
Since that distance is behind the first lens, and the second lens is 62.5 cm behind the first lens, that distance is 62.5 - 7.90 = 54.6 cm in front of the second lens, and becomes the object for that lens, thus,
1/25.9 = 1/54.6 + 1/q
q = 49.3 cm behind the second lens
Using that information, since q is positive, the image is real
2. Also, using that information, you have the second answer, which is 49.3 cm
The height can be found from the two magnifications.
m = -q/p
m1 = -7.9/13.7 = -.577
m2 = -49.3/54.6 = -.903
Net m = (-.577)(-.903) = .521
Then, m = h'/h
.521 = h'/5.85
3. h' = 3.05 mm
4. For the fourth answer, since the overall magnification is positive, the final image is upright
Answer:
11.87
Explanation:
final velocity^2= initial velocity ^2+ 2* Acceleration* distance
Final Velocity^2= 9*9+2*1.5.20
final velocity^2 = 141
final velocity = 11.87
The air particle inside the balloon will collide more with each other and the temperature inside the balloon will increase.
As a person squeezed and applies the pressure to the outside of a balloon, the air particle inside the balloon gains energy and collide with each other, the particle of the air also try leave the balloon surface will implies equal pressure on the wall of the balloon, as the pressure outside the balloon increase, the inside pressure will also increase.
We use the following formula to determine our acceleration:

We normally use letters in this formula, which gives us:

Filling in this formula gives us:
Δv (change of velocity) = 12 - 4 = 8 m/s
t = 1s

So our answer: the acceleration is