Answer:
Static Friction - acts on objects when they are resting on a surface
Sliding Friction - friction that acts on objects when they are sliding over a surface
Rolling Friction - friction that acts on objects when they are rolling over a surface
Fluid Friction - friction that acts on objects that are moving through a fluid
Explanation:
Examples of static include papers on a tabletop, towel hanging on a rack, bookmark in a book
, car parked on a hill.
Example of sliding include sledding, pushing an object across a surface, rubbing one's hands together, a car sliding on ice.
Examples of rolling include truck tires, ball bearings, bike wheels, and car tires.
Examples of fluid include water pushing against a swimmer's body as they move through it , the movement of your coffee as you stir it with a spoon, sucking water through a straw, submarine moving through water.
Answer:
R=V/I=6/2=3ohm
time =5minutes =5*60=300seconds
I=2A
Heat =I^2Rt=(2)^2*3*300=4*900=3600J
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
<span>Answer: Burrhus Frederic Skinner's Operant Conditioning.
</span><span>B.F. Skinner believed that to understand behavior, in the best way, is to look at the root causes or reasons of an action and its outcomes.
</span>
Skinner proposes the Law of Effect-Reinforcement. Here,he differentiated the positively reinforced behavior or the strengthened behavior, the negatively reinforced behavior (removal of the unpleasant experience), and weakened behavior because of punishment.
<span>
In positive reinforcement, behavior is strengthened through providing an outcome, an effect that an individual finds rewarding. Negative reinforcement also strengthens behavior because the unpleasant experience was removed. Punishment on the other hand is an opposite to reinforcement. Instead of increasing the response, it eliminates it or weakens it.
</span>
Answer:
1) D
2) A
Explanation:
1) Each group has the same number of valence electrons, which are the outer electrons.
2) Ionic bonds are between a metal and non - metal, the metal being sodium and the non - metal being chlorine.