1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
5

Help pls!!!!!

Mathematics
2 answers:
OLEGan [10]3 years ago
7 0

Answer:

Option D, y ≥ 5x + (-3)

Step-by-step explanation:

<u>Step 1:  Make an expression</u>

The value of y is greater than or equal to the sum of five times the value of x  and negative three.

The value of y is greater than or equal to ← y ≥

The sum of five times the value of x  and negative three ← 5x + (-3)

y ≥ 5x + (-3)

Answer:  Option D, y ≥ 5x + (-3)

Inga [223]3 years ago
6 0

Answer:

y  ≥ 5x+ (-3)

Step-by-step explanation:

greater than or equal to ≥

The sum means add

y  ≥ 5x+ (-3)

You might be interested in
Also need help on this
Ira Lisetskai [31]
Answer is 0.5
-2 divided by -4 equals 0.5
and same thing for the rest of the equation.
8 0
3 years ago
Read 2 more answers
Evaluate the expression 2x - 5 when x = -5 <br> C) 5<br> D) 15<br> A)-5<br> B) -15
IRINA_888 [86]

Answer:

B) -15

Step-by-step explanation:

8 0
3 years ago
Select the correct ratios.
Goshia [24]
65:100 because there are 65 girls and then 65 girls + 35 boys = 100 total students
4 0
2 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Juan scored 15 points more on this test than
maw [93]

Juan's least integer scores in both tests will be 85 and 100 respectively.

  • Test average of his two scores is atleast 92

Let :

  • Score on test 1 = b
  • Score on test 2 = b + 15

Average score can be related thus:

  • (Sum of score ÷ number of test) ≥ 92
  • (b + b + 15) ÷ 2 ≥ 92
  • (2b + 15) ÷ 2 = 92
  • 2b + 15 = 184
  • 2b = 184 - 15
  • 2b = 169
  • b = 169 ÷ 2
  • b = 84.5

Therefore, since both scores are integers, his least scores on both tests will be ::

  • 85 and (85 + 15) = 100

Learn more :brainly.com/question/15528814

8 0
3 years ago
Other questions:
  • Determine which functions have two real number zeros by calculating the discriminant, b2 – 4ac. Check all that apply.
    6·1 answer
  • Can you help me with this?
    7·2 answers
  • Find the similarity ratio of a cube with volume 216 ft to a cube with volume 1000ft
    11·1 answer
  • Amy has 3 children, and she is expecting another baby soon. Her first three children are girls. What is the probability that the
    9·2 answers
  • What is the 10th term in the geometric sequence: 32, 16, 8, 4...?
    7·2 answers
  • 6x2-2x3+x4<br> Please help
    5·1 answer
  • Which option correctly shows how this formula can be rearranged to isolate x^2?
    7·1 answer
  • Help me. Please due today
    6·1 answer
  • If the perimeter of the polygon below is 52 ft, solve for x, and identify the length of each side in the corresponding spaces be
    6·1 answer
  • assume the camera is placed 6 feet from the center of the merry-go-round and the diameter of the merry-go-round is 6 feet. build
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!