1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
2 years ago
9

To complete one orbit around the sun, the planet Venus travels approximately

Mathematics
1 answer:
rodikova [14]2 years ago
4 0
Hmmm the answer is 42.53
You might be interested in
4√6 •√3 how do I show work for this because the answer is 2√12​
Yuliya22 [10]

Answer:

4 \sqrt{6}  \times  \sqrt{3}  = 12 \sqrt{2}

Step-by-step explanation:

We want to simplify the radical expression:

4 \sqrt{6}  \times  \sqrt{3}

We write √6 as √(2*3).

This implies that:

4 \sqrt{6}  \times  \sqrt{3}  = 4 \sqrt{2 \times 3}   \times  \sqrt{3}

We now split the radical for √(2*3) to get:

4 \sqrt{6}  \times  \sqrt{3}  = 4 \sqrt{2}  \times  \sqrt{3}  \times  \sqrt{3}

We obtain a perfect square at the far right.

4 \sqrt{6}  \times  \sqrt{3}  = 4 \sqrt{2}  \times  (\sqrt{3} )^{2}

This simplifies to

4 \sqrt{6}  \times  \sqrt{3}  = 4 \sqrt{2}  \times 3

This gives us:

4 \sqrt{6}  \times  \sqrt{3}  = 4 \times 3 \sqrt{2}

and finally, we have:

4 \sqrt{6}  \times  \sqrt{3}  = 12 \sqrt{2}

5 0
2 years ago
What are the dimensions of the product?<br> -3<br> 2<br> 4 -3<br> X-2<br> 3<br> 5
Brut [27]

Answer:

b

Step-by-step explanation:

4 0
2 years ago
PQR is a right angled triangle calculate the size of angle marked x
romanna [79]

Answer:

\displaystyle x \approx 37.4^\circ

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Trigonometry</u>

  • [Right Triangles Only] SOHCAHTOA
  • [Right Triangles Only] cosθ = adjacent over hypotenuse<u> </u>

Step-by-step explanation:

<u>Step 1: Define</u>

Angle θ = <em>x</em>

Adjacent Leg = 5.8

Hypotenuse = 7.3

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Cosine]:                                                                    \displaystyle cosx^\circ = \frac{5.8}{7.3}
  2. [Fraction] Divide:                                                                                             \displaystyle cosx^\circ = 0.794521
  3. [Equality Property] Trig inverse:                                                                    \displaystyle x^\circ = cos^{-1}(0.794521)
  4. Evaluate trig inverse:                                                                                      \displaystyle x = 37.39^\circ
  5. Round:                                                                                                             \displaystyle x \approx 37.4^\circ
8 0
2 years ago
Using the given points, determine Δy.<br><br> (-3, -5) and (0, 10)
Jet001 [13]

Answer:

(-3,-5)

Step-by-step explanation:

because it as the information triangle y

3 0
2 years ago
Please help with the question in the picture!
Stella [2.4K]

Answer:

Tan C = 3/4

Step-by-step explanation:

Given-

∠ A = 90°, sin C = 3 / 5

<u>METHOD - I</u>

<u><em>Sin² C + Cos² C = 1</em></u>

Cos² C = 1 - Sin² C

Cos² C = 1 - \frac{9}{25}

Cos² C = \frac{25 - 9}{25}

Cos² C = \frac{16}{25}

Cos C = \sqrt{\frac{16}{25} }

Cos C = \frac{4}{5}

As we know that

Tan C = \frac{Sin C}{Cos C }

<em>Tan C = \frac{\frac{3}{5} }{\frac{4}{5} }</em>

<em>Tan C = \frac{3}{4}</em>

<u>METHOD - II</u>

Given Sin C = \frac{3}{5} = \frac{Height}{Hypotenuse}

therefore,  

AB ( Height ) = 3; BC ( Hypotenuse) = 5

<em>∵ ΔABC is Right triangle.</em>

<em>∴ By Pythagorean Theorem-</em>

<em>AB² + AC² = BC²</em>

<em>AC² </em><em>= </em><em>BC² </em><em>- </em><em> AB</em><em>² </em>

<em>AC² = 5² - 3²</em>

<em>AC² = 25 - 9</em>

<em>AC² = 16</em>

<em>AC  ( Base) = 4</em>

<em>Since, </em>

<em>Tan C = \frac{Height}{Base}</em>

<em>Tan C = \frac{AB}{AC}</em>

<em>Hence Tan C = \frac{3}{4}</em>

<em />

4 0
2 years ago
Other questions:
  • Find the value of the second term in this sequence. 34, ____ , 84, 109, 134
    15·1 answer
  • Paul has just enough money to buy either 5 erasers and 30 pencils or 10 erasers and 24 pencils. Each eraser costs $0.30. How muc
    14·1 answer
  • Circle C is shown. Line segments A C and B C are radii. The length of C B is 18. Angle A C B is 140 degrees. Arc A B is labeled
    11·2 answers
  • Jacket is 125.000 tax is 5.5%
    5·2 answers
  • Marshall has 3 bags in each of his 2 toy chests. Each bag has 5 marbles. How many
    5·2 answers
  • In an experiment, the probability that even A occurs is 0.2 and the probability that event B occurs is 0.5. If A and B are indep
    8·1 answer
  • Need help with this!!
    8·1 answer
  • Hello! Please help me with this question. I’ll mark brainly! Thank you :)
    12·1 answer
  • Is it more difficult to walk up the ramp or the hill? Show all steps and explain.
    14·2 answers
  • Use the distributive property <br> 3(4×+5)=「21×+0
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!