4.27 + 9.91
Round them to the nearest whole number.
4.27 ⇒ 4
9.91 ⇒ 10
Now you can add them up.
4 + 10 = 14
Answer:

Step-by-step explanation:
It is a result that a matrix
is orthogonally diagonalizable if and only if
is a symmetric matrix. According with the data you provided the matrix should be

We know that its eigenvalues are
, where
has multiplicity two.
So if we calculate the corresponding eigenspaces for each eigenvalue we have
,
.
With this in mind we can form the matrices
that diagonalizes the matrix
so.

and

Observe that the rows of
are the eigenvectors corresponding to the eigen values.
Now you only need to normalize each row of
dividing by its norm, as a row vector.
The matrix you have to obtain is the matrix shown below
The second and the third one because first is the same as 3 4/7 and 81=3^4
Answer:
[-3, ∞)
Step-by-step explanation:
There are many ways to find the range but I will use the method I find the easiest.
First, find the derivative of the function.
f(x) = x² - 10x + 22
f'(x) = 2x - 10
Once you find the derivative, set the derivative equal to 0.
2x - 10 = 0
Solve for x.
2x = 10
x = 5
Great, you have the x value but we need the y value. To find it, plug the x value of 5 back into the original equation.
f(x) = x² - 10x + 22
f(5) = 5² - 10(5) + 22
= 25 - 50 +22
= -3
Since the function is that of a parabola, the value of x is the vertex and the y values continue going up to ∞.
This means the range is : [-3, ∞)
Another easy way is just graphing the function and then looking at the range. (I attached a graph of the function below).
Hope this helped!
Answer:
Step-by-step explanation:
5p + 9c = p
9c = p - 5p
9c = -4p
c = -4p/9
c= 