Answer:

Step-by-step explanation:
<u>Linear Combination Of Vectors
</u>
One vector
is a linear combination of
and
if there are two scalars
such as

In our case, all the vectors are given in
but there are only two possible components for the linear combination. This indicates that only two conditions can be used to determine both scalars, and the other condition must be satisfied once the scalars are found.
We have

We set the equation

Multiplying both scalars by the vectors

Equating each coordinate, we get



Adding the first and the third equations:


Replacing in the first equation



We must test if those values make the second equation become an identity

The second equation complies with the values of
and
, so the solution is

Answer:
C
Step-by-step explanation:
The graph can take any value of X
-3[ x^2 - 2x + 1] + 4
-3x^2 +6x -3 + 4
-3x^2 + 6x + 1
x can take any value of real numbers and there would be a solution
Hence all real numbers is the domain.
Answer:
(-1, 1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = 2x + 3
y = x + 2
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3 = x + 2
- [Subtraction Property of Equality] Subtract <em>x</em> on both sides: x + 3 = 2
- [Subtraction Property of Equality] Subtract 3 on both sides: x = -1
<u>Step 3: Solve for </u><em><u>y</u></em>
- Substitute in <em>x</em> [Original Equation]: y = -1 + 2
- Add: y = 1
104/ 8 = 13.
Every hour she vacuumed 13 cars.
1 and half hour
= 60 minutes+ 30 minutes
= 90 minutes
Now,
Uzanne need 15 minutes to do 10 problems
Uzanne need 1 minute to complete 10/15 problems
Uzanne need 90 minutes to do
= (10/15)*90
=(2/3)*90
=2*30
=60 problems