The perimeter of right isosceles ΔABC with midsegment DE is 16 + 8√2.
If right isosceles ΔABC has hypotenuse length h, then the two other sides are congruent.
side a = side b
Using Pythagorean theorem, c^2 = a^2 + b^2
h^2 = a^2 + b^2 a = b
h^2 = 2a^2
a = h/√2
If DE is a midsegment not parallel to the hypotenuse, then it is a segment that connects the midpoints of one side of a triangle and the hypotenuse. See photo for reference.
ΔABC and ΔADE are similar triangles.
a : b : h = a/2 : 4 : h/2
If a/2 = a/2, then b/2 = 4.
b/2 = 4
b = 8
If a = b, then a = 8.
If a = h/√2, then
8 = h/√2
h = 8√2
Solving for the perimeter,
P = a + b + h
P = 8 + 8 + 8√2
P = 16 + 8√2
P = 27.3137085
To learn more about midsegment: brainly.com/question/7423948
#SPJ4
If you need the answer as a fraction then it is 5/4
if you need it as a decimal it is 1.25
Answer:
The answer is given below
Step-by-step explanation:
A) Integers are whole numbers (without fraction) that are either positive or negative. If T={x:X is an integer between 1 and 4}, therefore the elements in set T = {2, 3}
B) Since the elements in set T = {2, 3}, then the number of elements in set T = 2
C) The subsets of set T are {}, {2}, {3} and {2,3}
D) Proper subset of set T are subsets of T that is not equal to T. The proper subsets of T are {2} and {3}
An improper subset of set T contains all the element of set T and a null element. The improper subset of set T are {2,3} and {}
Answer:
wave 1
Step-by-step explanation:
190-15=x
I believe?
I THINK THIS IS THE ANSWER