Answer:
D. because the light is reflected back into the fiber along its sides
Explanation:
The fiber is constructed in a way that the light is bent/reflected/refracted toward the center core of glass. So, from the center core, there is a layer above it that has a different propagation than the core, and above that the same thing. To give you a real world visual example, if you look down in a pool of water, then stick a straight stick into it, you see that the straight stick appears to bend. That is what is happening to the light as it travels through a different medium (air to water). This same effect is incorporated in the fiber optic cable construction.
Answer:
a) [volts] = [N m / C],
b) The lines or surface that has the same potential are called equipotential
c) the equipotential lines must also be perpendicular to the electric field lines
Explanation:
a) find the units of the volt
the electric potential energy is
V = k q / r
V = [N m² / C²] C / m
V = [N m / C]
The electric potential is defined as
V = E .s
V = [N / C] [m]
V = [N m / C] = [volt]
we see that in the two expressions the same result is obtained therefore the volt is
[volts] = [N m / C]
b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.
c) The electric potential is defined as the gradient of the electric field
v =
therefore the equipotential lines must also be perpendicular to the electric field lines
First one is D and Second one is B
Answer:
271cm^2
Explanation:
volume 1= 15^3 =3375
temp. 1. = 20+273 = 293
temp. 2. = 50+273 = 353
volume 2 =?
According to Charles law
volume is proportional to temperature
v2 = v1 * t2 / t1
v2 = 3375 * 353 / 293
v2 = 4066cm^3
v = area * length
4066 = area * 15
area = 4066/15 = 271cm^2
Responder:
Explicación:
Usaremos la ecuación de movimiento para determinar la altura de la bola medida desde la parte superior del edificio.
Usando la ecuación para obtener la altura de caída
S = ut + 1 / 2gt²
u es la velocidad inicial = 25 m / s
g es la aceleración debida a la gravedad = 9,81 m / s²
t es el tiempo = 7 segundos
S es la altura de la caída
S = 25 (7) +1/2 (9,81) × 7²
S = 175 + 4,905 (49)
S = 175 + 240,345
S = 415,35 m
Esto significa que la pelota se elevó a 415,35 m de altura